
Pipelined Parallel AC-based Approach for Multi-String Matching

Wei Lin1, 2, Bin Liu1

1 Department of Computer Science and Technology, Tsinghua University, Beijing, China
2 Department of Electronic Engineering, City University of Hong Kong, Hong Kong

lin-w04@mails.tsinghua.edu.cn

Abstract1
New applications such as real-time packet

processing require high-speed string matcher, and the
number of strings in pattern store is increasing to tens
of thousands, which requires a memory efficient
solution. In this paper, a pipelined parallel approach
for hardware implementation of Aho-Corasick (AC)
algorithm for multiple strings matching called P2-AC
is presented. P2-AC organizes the transition rules in
multiple stages and processes in pipeline manner,
which significantly simplifies the DFA state transition
graph into a character tree that only contains
forwarding edges. In each stage, parallel SRAMs are
used to store and access transition rules of DFA in
memory. Transition rules can be efficiently stored and
accessed in one cycle. The memory cost is less than
47% of the best known AC-based methods. P2-AC
supports incremental update and scales well with the
increasing number of strings. By employing two-port
SRAMs, the throughput of P2-AC is doubled with little
control overhead.

1. Introduction
String matching has been extensively studied in the

past 30 years. A string C of length n is a sequence of
characters C1C2…Cn. Let Σ={Y1, Y2, … YN} be a
finite set of strings called patterns, and let I be an
arbitrary string. The string matching problem is to
identify and locate all substrings of I which are patterns
in Σ.

Nowadays new applications such as real time
intrusion detection, anti-virus scanner and spam filter
etc. require high-speed hardware assisted string
matcher, and the number of strings in pattern store is

1 This work is supported by NSFC (60573121 and 60625201), the
Cultivation Fund of the Key Scientific and Technical Innovation
Project, MoE, China (705003), the Specialized Research Fund for the
Doctoral Program of Higher Education of China (20060003058), and
863 high-tech project (2007AA01Z216,2007AA01Z468)

increasing to tens of thousands, which requires a
memory efficient solution.

Many of the proposed hardware solutions are based
on the well-known Aho-Corasick (AC) algorithm [1]
where the system is modeled as a deterministic finite
automaton (DFA). The AC algorithm solves the string
matching problem in linear time proportional to the
length of the input stream. However, the memory
requirement is too expensive in a naive hardware
implementation. In this paper, a multiple string
matching architecture for tens of thousands of patterns
called P2-AC is proposed, which uses a pipelined
processing approach with parallel SRAMs to the
implementation of AC algorithm.

Our contributions are three folds. Firstly, transition
rules of are classified into multiple groups and stored in
corresponding stages. Input character is sent to all the
pipeline stages simultaneously, which simplifies the
state graph into a tree and guarantees the edge
reduction algorithmically. Previously published AC-
based methods are heuristic-based, such as bit-map
encoding and path compression [2], bit-slice
implementation [3], categorizing alphabets based on
frequency count [4], and pattern set partitioning [5].
Performances of these methods are sensitive to the size
and statistical properties of the pattern set.

Secondly, in real implementation, the number of
pipeline stages is fixed to a constant value K. Patterns
longer than K are divided into multiple segments with
the length equal to or less than K. A DFA aggregation
approach is used to combine partial match results to
match the whole pattern. By carefully organizing the
lookup tables and allocating the state and segment IDs,
only a small quantity of history information needs to be
maintained.

Thirdly, in order to efficiently store and access
transition rules in the DFA state graph, the field of
current state ID in transition rule is not stored in SRAM
but is used as address to access candidate next state. In
order to get the next state ID in one cycle, transition
rules with the same current state ID in one stage are
stored at the same address of different SRAMs. During

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.47

665

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

lookup process, entries at the same address of multiple
SRAMs are accessed in parallel. The outputs of
SRAMs are stored into corresponding registers, which
are functioned like a small BCAM compared with input
symbol to decide the next state.

 The discussion in this paper is restricted to the
processing of simple strings. Extensions to handle
strings defined by regular expressions will be discussed
in the future work. A brief review of related works is
given in section 2. The proposed P2-AC architecture
will be presented in section 3. Section 4 is the
performance evaluation and section 5 is the conclusion.

2. Related works
In the basic AC algorithm the system starts from an

initial state, and looks up the transition rule table using
the current state and input character to determine the
next state. An entry in the transition rule table is a 3-
tuple E= (u=current state, i=input symbol, v=next state).
A match result is generated when the system reaches an
output state.

To facilitate discussion, some terminologies are
introduced. Figure 1 shows the state graph for a set of
two strings Σ= {apple, past}. Each node in the state
graph represents a distinct string value as shown in the
node label. To improve readability, transitions to the
root are excluded. The input symbol of a transition is
equal to the last character of the string represented by
the corresponding destination node. Nodes in the state
graph can be assigned level number according to the
length of the string that it represents. The level number
of the root node is equal to zero because its state value
corresponds to the empty string. We denote a node on
level 1 as L1 node, and so on. An edge E= (u, i, v) is
called a forward edge if the level number of v is equal
to 1 plus the level number of u. Forward edges are
shown with solid lines in Fig. 1. The remaining edges
are called cross edges, and they are shown in dashed
lines.

Figure 1 State graph for Σ ={apple, past}.

Some pattern matching architectures are logic based.
The key issue is how to efficiently map patterns into
programmable circuit logics of FPGA[6-9]. Those

logic based methods must reprogram FPGA when
pattern set needs to update, and the size of pattern set is
restricted because the logic resource in FPGA is
expensive and limited. I. Sourdis [9] and C.R.Clark [10]
present their architectures to give several methods to
efficiently map patterns on FPGAs.

Some pattern matching architectures are RAM based
using AC like algorithms. Patterns are stored in RAMs
other than logics. The key issue is how to use less
memory to support bigger pattern set with deterministic
high throughput. Tuck et al [2] proposed a bit-map
encoding and path compression technique to reduce the
memory cost of the transition rule table. Tan and
Sherwood [3] proposed to use bit-split finite state
machines (FSMs) where each bit-split FSM processed
one bit of an input byte, if there are N signatures, there
will be N/2 FSMs. Lunteren [5] proposed a novel
approach to substantially reduce the size of the
transition rule table. All edges pointing to the same
node v on L1 are replaced by a single entry (*, i, v) in
the transition rule table, where * is a wildcard.
Similarly, all edges pointing to the root are replaced by
a single entry (*, *, root). The number of edges can be
further reduced to about 1.5 edges per character by
dividing the signature set into multiple groups. But the
performance of the partitioning scheme depends largely
on the size and statistical properties of the signature set.
Pao proposed a multiple stages architecture [11] to
reduce the transition rules, which used hashing scheme
to get the next state when accessing each lookup table,
hashing confliction cannot be avoided and the
performance is not guaranteed. Song proposed a n-step
cache architecture [12] to eliminate a part of cross
edges from the graph and use a complicated data
structure to store and access transition rules with the
same current state, it assumes that most of the cross
edges belong to 1-step category and the number of
states shared by multiple transition rules as current
state is rare, if the statistical properties of the pattern
set change, the memory cost for Song’s method may
not have an ideal result.

Some pattern matching architectures are TCAM
based. Patterns are fully or partly stored in Ternary
Content addressable Memory (TCAM). The speed and
memory efficiency are partially offset by the slower
clock rate (maximum 266 MHz) and higher cost of
TCAM. Alicherry et al [13] used TCAM to implement
the transition rule table. In their method, state
transitions are based on multiple (typically 2 to 4) input
characters. Dimopoulos et al [4] proposed to divide the
256 alphabets into frequent and infrequent characters
based on their frequency counts in the signature set. A
full state graph is constructed for frequent characters,
where the transitions rule table for infrequent
characters is implemented using CAM, the

666

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

performance depends on statistical properties of the
signature set.

There are also proposals based on hashing [14-16]
and Bloom filters [17, 18]. A general drawback of
these methods is that they can only handle strings of up
to certain length. Long signatures are divided into
multiple segments. Complex auxiliary data structures
and/or hardwired aggregation logic are required to
combine the partial match results.

In this paper, P2-AC utilizes the parallelizability of
hardware implementation to store and process the
transition table in pipeline manner, which eliminates all
the cross edges and greatly reduces the memory
requirement. P2-AC also utilizes the resource of
multiple SRAM blocks in FPGA or ASIC chipset,
which guarantees the deterministic line speed
throughput and supports incremental updating the
pattern set. Moreover, P2-AC gives a simple solution to
handle long signatures without affecting the number of
stages in pipeline.

3. P2-AC algorithm and architecture
In order to reduce the number of states in DFA state

graph, all patterns and input characters are converted to
lower case. For case sensitive pattern, a bitmap is used
to specify each character of the pattern is lower or
upper case, which is used to check with the input
stream when the lower case pattern has been matched.

In the DFA, the longest matching substring for the
current input is represented by the state value of the
current state. Suppose the input stream is “appastxyz”.
The DFA of Fig. 1 will visit the nodes <a>, <ap> and
<app> in the first 3 cycles. In the 4th cycle, the input
character ‘a’ does not match the input symbol of any
forward edges originating from <app>. Hence, the
DFA will follow a cross edge and transits to state <pa>.

The reason for the existence of cross edges is that
the starting position of a pattern can be anywhere in the
input stream, and the substring of a pattern may be the
prefix of another pattern. In the basic AC algorithm,
there is only one current state active at one time. When
the first character of a pattern arrives and the current
state is not <root>, the transition rule corresponding to
the cross edge may be accessed later.

It’s interesting if multiple threads are used to access
the state graph, each time an input character is sent to
all the threads, and there is always a new thread
beginning from <root>. As shown in Fig. 2, all cross
edges can be eliminated from the state graph, which is
simplified to a character tree. A thread is terminated
when there is no forwarding edge with the input
symbol equal to the input character, otherwise, this
thread will follow the matched forwarding edge to the
next active state on the next level. When an output state

is reached, the system will report a pattern is matched
by the thread. There is at most one thread on each level.

Figure 2 Simplified state tree for Σ = {apple, past}.

In the worst case, on each level of the simplified
state tree there is an active state, the number of threads
is equal to the height of the tree, which is equal to the
length of the longest pattern plus one (plus the <root>
node represents empty string). In Snort pattern set, the
maximum length is more than 200, it’s uneconomical
and impractical to track so many threads
simultaneously in hardware implementation.

In order to handle long patterns and restrict the
maximum number of threads to a constant value K,
patterns longer than K are divided into multiple
segments of length K except the last segment whose
length is equal to or less than K. The pattern matching
system is composed of two parts, the first part named
pipeline unit (PU) uses at most K threads to match each
segment, the second part named aggregation unit (AU)
uses the matching result from the first part to aggregate
the partial matched segments together to match the
whole pattern.

In PU, a character tree is built using the divided
segments. The height of the tree is K+1 (plus the
<root> node which represents empty segment). Edges
representing transition rules are stored in K pipeline
stages. The logical format of transition rule in PU is
<current state, input character, next state>. A transition
rule is stored in stage X if level number of the node in
the <next state> field is equal to X. During each cycle,
copies of a character from input stream are sent to K
stages, at most one active thread exists on one stage,
which will use the active state and the input character
to search the transition rule table to get the next state
and send it to the next stage, if it’s an output state, the
matched segment ID will be sent to AU.

In AU, a DFA is used to aggregate partial matched
segments together to match the whole pattern. The
logical format of transition rule in AU is <current state,
input segment, next state>. The number of states in
DFA of AU is much fewer than the original DFA
constructed directly. Transition rules in AU are
classified into K groups based on the length of input
segment, which is from 1 to K. Each group is stored in
a table (T1 to Tk). In the worst case, each cycle K input

667

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

segments with different length are sent to AU, and look
up K tables separately. The system need to maintain K
current states for each table.

Because a segment with length less than K must be
the last segment of a pattern, the search result is the
index of a pattern in tables from T1 to Tk-1. Next state
(NS) is generated in Tk. In the following ith cycle
(1≤i<K), NS will become the current state of Ti.

When looking up the transition rule tables in PU or
AU, it’s desirable to get the expected transition rule in
one memory access cycle. In order to achieve this
requirement, transition rules with the same current state
are stored in the same address of different SRAMs. The
current state ID is used as address to get all the
candidate transition rules, which are then compared
with the input character or segment to get the expected
matching result. The number of SRAMs for each stage
is equal to maximum transition rules with the same
current state. The special case is that transition rules in
PU or AU with <root> as current state are stored in one
SRAM, which is indexed by input character or
carefully assigned segment ID.

The architecture of P2-AC is shown in Fig. 3.
Assuming K=4, in each cycle, one character from the
input stream is sent to PU. PU is implemented by 4
pipeline stages. Transition rules are stored separately in
tables from LT1 to LT4. The active current state is
maintained by each stage. Related transition rules in
one stage are extracted and compared with the input
character. The output to the next stage is the next state
ID, the output to AU is the matched segment ID, the
output to Pattern store is matched short pattern ID. By
carefully assignment, the three IDs can be the same
value.

Figure 3 Architecture of P2-AC

In AU, transition rules are stored separately in tables
from T1 to T4. Input segment ID is sent to Ti if the
length of the segment is equal to i (1≤i≤4). Tstart is a
suitable of T4, which stores the first segment for each
long pattern. Active current state for each table is

maintained in current state registers, which are updated
by state ID translation table (STT) each cycle. STT is
used to record the transition rules’ addresses for an
active state in tables from T1 to T4. The index of the
active state is provided by T4. In order to reduce the
size of STT, if an active state only exists in one table, it
will not be stored in STT but directly provided by T4.
Related transition rules for the current active state is
extracted from the table and compared with the input
segment ID. The output of Ti (1≤i≤4) to pattern store is
the long pattern ID. The output of T4 to STT is the
index of next active state existing in multiple tables, or
the transition rules’ address of the next active state in
one table.

Let’s consider the structure of transition rule table in
each stage of PU. According to the statistics of patterns
in SNORT rules, the number of child nodes for one
state is less than 50 and usually 1 or 2, except for
<root>; the number of child nodes of <root> is a large
one. Transition rules in stage1 are stored in one SRAM
which is indexed by the ASCII code of the input
character. Transition rules on other stages are stored in
parallel SRAMs, and the State ID is assigned as
address to locate all the related transition rules, which
are read into registers and compared with the input
character.

SRAM
1

SRAM
2

SRAM
3

SRAM
4

SRAM
K-1

SRAM K

K
SRAMs

Group K

Group K-1

Group 4

……

……

Group 3

Group 2

Group 1

Register 1

Register 2

……

Register K

Comparator

Matching
result

Figure 4 Structure of transition rule table

As shown in Fig. 4, transition rules with the same
current state are stored at the same address in multiple
SRAMs. The number of SRAMs in one stage is
determined by the maximum number of transition rules
with the same current state, which is called maximum
fan-out number in this paper. According to the statistics
of SNORT rules, there are only a few states with a
large fan-out number less than 56, while most of the
states’ fan-out number is equal to 1 or 2. The sizes of
the parallel SRAMs are not the same. Transition rules
are grouped into multiple groups and arranged in
descending order based on the fan-out number of the
current state. By choosing the size of the SRAMs, there
are unallocated entries between the groups, which can

668

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

be used to support incremental update when new
patterns are added into the rule set.

Because all the transition rules in LT1 have the same
current state <root>, they are all stored in one SRAM.
As shown in Fig. 5, the SRAM has 256 entries.
Transition rule use the ASCII code of the input
Character as its address in the SRAM. When looking
up LT1, the input character will be used as index to
locate the related transition rule in the SRAM.

Figure 5 Transition rules in LT1 of PU

Transition rules in AU are classified into K tables
(K=4) according to the length of the input segment.
Similar to the structure of tables in PU, transition rules
in one table in AU are also stored in parallel SRAMs as
shown in Fig. 4. The main difference is the next
matching position among tables in AU is not shifted
one by one, but determined by the length of the next
segment sent from PU. State register Bi in Fig. 3 are
used to record the active current state for Ti in AU,
which will be updated by STT in the next cycle.
Transition rules with the same current state may not be
stored at the same address among different tables. As
shown in Fig. 6, STT is used to record the addresses for
one state in different tables in AU. If the state only
exists in one table, its address in that table will not be
stored in STT but provided directly by T4. Otherwise,
T4 will provide the index of the state to access STT.
This operation can be pipelined, so it will not slow
down the processing speed of the system.

For some transition rules in T4 whose current state is
<root>, they are all stored in one SRAM. When
assigning segment IDs, segments in the transition rules
with <root> as their current state are assigned values
from 0 to M-1 (M is the number of the transition rules
whose current state is <root>). Then if the current state
of T4 is equal to <root>, segment ID is used as index to
locate the related transition rule in T4. The other
transition rules in T4 are stored in parallel SRAMs as
shown in Fig. 4.

a1 a2 a3 a4

b1 Null Null b4

e1 e2 Null e4

…
…

Address
in T1

Address
in T2

Address
in T3

Address
in T4

Null c2 Null c4

Null Null d3 d4

g1 Null g3 g4

Null f2 f3 f4

State
Index

0

1

2

3

4

5

6

…
…

Figure 6 The format of State ID translation table (STT)

In order to support concurrent accesses, pattern store
uses 2K SRAMs to store patterns. When K=4, the
number of SRAMs in pattern store is 8.

Let’s consider an example where the pattern set is
{apple, applause, ampliation, past, pat, parable} and
the input stream is “appampliation”.

Figure 7 Logical organization in PU

As shown in Fig. 7, the patterns are divided into 10
segments when K=4. {pat, past} are patterns shorter
than 4, which can be directly matched. {appl, e, ause,
ampl, iati, on, para, ble} are segments, which will be
sent to AU for aggregation. As shown in Fig. 8,
segments of one pattern are aggregated to match the
whole pattern. {apple, applause, ampliation, parable}
are patterns longer than 4, which are matched in AU.

Figure 8 Logical organization in AU

Considering the physical organization in PU, LT1
uses one SRAM to store transition rules to nodes on

669

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

level 1, which is indexed by the ASCII code of the
input character. LT2, LT3 and LT4 use parallel SRAMs
to store the transition rules to the nodes on the
corresponding levels, which are indexed by the current
state IDs. As shown in Fig. 9, segment {e} can be
matched in LT1, segment {on} can be matched in the
first SRAM of LT2, segment {ble} can be matched in
the first SRAM of LT3, pattern {pat} can be matched in
the second SRAM of LT3, segments {appl, ampl, ause,
iati, para} can be matched in the first SRAM of LT4
and pattern {past} can be matched in the first SRAM of
LT4.

Figure 9 Physical organization in PU

Figure 10 Physical organization in AU

Considering the physical organization in AU,
transition rules with <root> as their current state are
stored in one SRAM in T4, which is called starting
table and indexed by the pre-assigned input segment
IDs. The other transition rules in T1, T2, T3 and T4 are
stored in parallel SRAMs. As shown in Fig. 10,
transition rules <root, appl, appl>, <root, ampl, ampl>
and <root, para, para> are stored in the starting table in
T4; transition rules <appl, ause, applause> and <ampl,
iati, ampliati> are stored in the other part of T4;
transition rule <appl, e, apple> is stored in T1;
transition rule <ampliati, on, ampliation> is stored in
T2; transition rule <para, ble, parable> is stored in T3.
The bold states in transition rules are matched patterns.

In Fig. 10, state {appl} both exists in address 0 of T1
and in address 1 of T4. We use one entry in STT to
record the address mapping relationship for state
{appl}.

To support accessing pattern store concurrently,
patterns are stored in multiple SRAMs, which are one
to one mapping relationship with tables in PU and AU.

Assuming the input stream is {appampliation}, in
the 7th cycle, segment {ampl} is matched in PU and
state {ampl} is matched in AU. In the 11th cycle,
segment {iati} is matched in PU and state {ampliati} is
matched in AU. In the 13th cycle, segment {on} is
matched in PU and pattern {ampliation} is finally
matched in AU.

For one type of transition rules, whose output
represents more than one meaning, such as next state
ID, segment ID or pattern ID, we assign these IDs with
the same value and use three bits to indicate the
effective meanings of the stored value. Because the
numbering space in different tables is independent, the
ID allocating strategy is reasonable and memory
efficient.

4. Performance evaluation
We extract 5669 distinct patterns from the Snort

V2.8 rule set [19]. The signatures are converted into
lower case letters. The total character count is 79211.
The maximum pattern length is 109 characters and the
average length is about 14 characters. About 96% of
the signatures have no more than 36 characters.

Our evaluation indicates that better memory
efficiency is obtained when the segment length is in the
range of 4 to 6. As shown in Table 1, for k=4, the
number of entries in the lookup tables for the pipeline
unit and the DFA unit are 18599 and 15876,
respectively. The width of the state ID for the pipeline
unit and the DFA unit are 15 bits and 14 bits,
respectively. Because LT1 and Tstart are indexed by
input character and input segment ID respectively, one
SRAM with width 18 bits and length 256 is allocated to
LT1, another SRAM with width 20 bits and length 2561
is allocated to Tstart. STT stores the addresses for states
existing in multiple tables in AU, one SRAM with
width 45 bits and length 376 is allocated to STT. Other
tables in PU and AU employ parallel SRAMs to store
transition rules with the same current state at the same
address, which are indexed by the current state.

Table 1 Allocation of Snort rule segments
K=4 LT1 LT2 LT3 LT4

of Entries in
PU

208 2092 6811 9494

Entry Width 18 26 26 26
of SRAMs 1 50 29 18

of 0 50 29 18

670

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

Comparators
Comparator

Width 8 8 8

K=4 T1 T2 T3 T4 Tstart STT
of Entries in

AU 1143 1094 974 9432 2622 379

Entry Width 35 35 35 35 20 45
of SRAMs 6 4 5 31 1 1

of
Comparators 6 4 5 31 0 0

The resource cost of SRAMs and logic registers in
FPGA is shown in Table 2. In all, the Snort pattern set
costs 305 M512 SRAM blocks and 228 M4K SRAM
blocks, which are about 133KB and 13.68 bits per
character for the utilized Snort pattern set. Logic
registers are used to implement the parallel
comparators for the lookup tables, which are 4132
LUTs in FPGA and about 0.05 LUTs per character. We
use Altera’s StratixII EP2S60 FPGA to implement the
pattern matching system using P2-AC method. The
resource cost for the Snort pattern set used is about
42.8% SRAM bits and 8.5% LUTs in EP2S60 FPGA.

Table 2 SRAMs and logic Cost in FPGA
K=4 M512 M4K M-

RAM LUTs

LT1 3 1 0 0
LT2 118 2 0 1300
LT3 68 37 0 754
LT4 37 57 0 468
Tstart 5 12 0 0
T1 13 9 0 210
T2 7 8 0 140
T3 8 8 0 175
T4 44 90 0 1085

STT 2 4 0 0
SRAM
blocks 305 228 0 4132

EP2S60 329 255 2 48352
Total cost 1,090,048 bits 4132
EP2S60 2,544,192 bits 48352

Percentage 42.8% 8.5%

Cost per char 13.68 bits/char 0.05
LUTs/char

Performance comparison with 5 other AC-based
methods is given in Table 3. The memory cost of P2-
AC, BFPM [5] and the TCAM-based method of [13]
are evaluated using the same signature set. When the
given signature set is divided into 8 groups in BPFM,
the number of edges per character is about 2.5. With
36-bit lookup table entries, the memory cost for BFPM
is about 90 bits/char. In [13], we assume state
transitions are based on 2 input characters per cycle.

The hardware cost of bit-split FSM [3] and split-AC [4]
are quoted from [4]. The hardware cost of CDFA are
quoted from [12]. Both bit-split FSM and split-AC
require complex control logic. For the split-AC method,
there can be tradeoff between memory cost and control
logic. The chip area for a FPGA logic cell is
approximately the same as 12 bytes of memory [3].
Hence, the actual hardware cost for the 2 sets of
implementation parameters shown in Table 3 are more
or less the same.

From Table 3, we can see that P2-AC has a clear
performance advantage over the other methods. The
memory cost of P2-AC is lower than BFPM and CDFA
by 85% and 47%, respectively. Moreover, the
throughput of P2-AC is two times that of CDFA. In
general, methods such as BFPM and CDFA that divide
the signature set into a larger number of subsets will be
in a disadvantage position when considering FPGA
implementation. In these methods, the system will have
8 to 16 large lookup tables of roughly equal size. Even
though the total memory requirement may be smaller
than the memory capacity of a FPGA, but the required
memory modules may not fit the size of the RAM
blocks available on the device. As a result, a higher-
end more expansive device needs to be used.

Table 3 Comparison with other AC-based methods

Method
Pattern

Set
(chars)

Memory
(per
char)

Control
logic

Speed
(char/cycle)

bit-split FSM 12.8K 186 bits complex 1

split-AC 24K
65 bits 60061

LUTs 1
(slower clk)189 bits 12341

LUTs
BFPM

(8 groups) 80K 90 bits simple 1

TCAM
(2char/cycle) 80K

56 bits
TCAM

+ 27
bits

SRAM

simple
2 to 4 (max

266MHz
clk)

CDFA (4
groups, 2-

way
associative)

29K 49.6
bits

data not
available

1 (interleave
2 data

streams)
CDFA (4
groups, 8-

way
associative)

29K 26.4
bits

data not
available

1 (interleave
2 data

streams)

P2-AC 80K 13.68
bits 4132LUTs 2

The control logic for P2-AC is very simple. The
pipelining of output results from one stage to the next
stage can be realized by simple clocked-register. LT1 is

671

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

a 256-entry table indexed by the input character. Tstart is
a table indexed by the input segment ID. Other tables
are implemented by parallel SRAMs indexed by the
current state ID, related transition rules are extracted
and compared together to get the matched result. By
carefully assignment, the next state ID, segment ID and
pattern ID represented by one transition rule can be the
same value.

5. Conclusion
A pipelined approach with parallel SRAMs for

hardware implementation of the Aho-Corasick
algorithm is presented. The system maintains multiple
threads that traverse the automaton concurrently so that
only forward edges needed to be stored in the state
graph. In contrast to previously published heuristic-
based methods, state graph reduction in P2-AC is
guaranteed algorithmically. This is a definite advantage
that ensures scalability of the method to handle the fast
expanding signature set for network intrusion
detection. Parallel SRAMs are used to store and access
transition rules efficiently. Incremental update is also
supported by P2-AC, patterns can be added into or
deleted from the pattern set within one cycle. The
memory cost of P2-AC is as low as 13.68 bits/char for
a signature set with 5.7K strings which is less than 47%
of the best known AC-based methods. Simplicity and
elegance of the pipeline control allows the system to
operate at high clock rate. In addition, if two-port
memories are available, we can implement 2 pipelines
on the same device that share the lookup tables. As a
result, the system throughput can be doubled with a
little overhead.

6. References
[1] Alfred V. Aho and Margaret J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search. Communications
of the ACM, 1975. 18(6): p. 333-340.
[2] Nathan Tuck, et al. Deterministic memory-efficient string
matching algorithms for intrusion detection. 2004.
Hongkong, China: Institute of Electrical and Electronics
Engineers Inc., Piscataway, NJ 08855-1331, United States.
[3] Lin Tan and Timothy Sherwood. A high throughput string
matching architecture for intrusion detection and prevention.
2005. Madison, WI, United States: Institute of Electrical and
Electronics Engineers Inc., New York, NY 10016-5997,
United States.
[4] I. Papaefstathiou V. Dimopoulos, D. Pnevmatikatos, A
memory-efficient reconfigurable Aho-Corasick FSM
implementation for intrusion detection systems, in IEEE IC-
SAMOS. 2007. p. 186-193.
[5] Jan Van Lunteren. High-performance pattern-matching
for intrusion detection. 2006. Barcelona, Spain: Institute of
Electrical and Electronics Engineers Inc., Piscataway, NJ
08855-1331, United States.

[6] Zachary K. Baker and Viktor K. Prasanna. Time and area
efficient pattern matching on FPGAs. 2004. Monterey, CA.,
United States: Association for Computing Machinery.
[7] Zachary K. Baker and Viktor K. Prasanna. A
methodology for synthesis of efficient intrusion detection
systems on FPGAs. 2004. Napa, CA, United States: IEEE
Computer Society, Los Alamitos, CA 90720-1314, United
States.
[8] Long Bu and John A. Chandy. FPGA based network
intrusion detection using content addressable memories.
2004. Napa, CA, United States: IEEE Computer Society, Los
Alamitos, CA 90720-1314, United States.
[9] Ioannis Sourdis and Dionisios Pnevmatikatos. Pre-
decoded CAMs for efficient and high-speed NIDS pattern
matching. 2004. Napa, CA, United States: IEEE Computer
Society, Los Alamitos, CA 90720-1314, United States.
[10] Christopher R. Clark and David E. Schimmel. Scalable
pattern matching for high speed networks. 2004. Napa, CA,
United States: IEEE Computer Society, Los Alamitos, CA
90720-1314, United States.
[11] Derek Pao, Wei Lin, and Bin Liu, Pipelined Architecture
for Multi-String Matching. Computer Architecture Letters,
2008.
[12] Tian Song, Wei Zhang, Dongsheng Wang, Yibo Xue, A
Memory Efficient Multiple Pattern Matching Architecture for
Network Security, in IEEE INFOCOM 2008. 2008.
[13] M. Alicherry, M. Muthuprasanna, and V. Kumar, High
Speed Pattern Matching for Network IDS/IPS, in IEEE
ICNP. 2006. p. 187-196.
[14] Young H. Cho and William H. Mangione-Smith. A
pattern matching co-processor for network security. 2005.
Anaheim, CA, United States: Institute of Electrical and
Electronics Engineers Inc., Piscataway, NJ 08855-1331,
United States.
[15] Giorgos Papadopoulos and Dionisios Pnevmatikatos.
Hashing + Memory = low cost, exact pattern matching. 2005.
Tampere, Finland: Institute of Electrical and Electronics
Engineers Computer Society, Piscataway, NJ 08855-1331,
United States.
[16] Ioannis Sourdis, Dionisios N. Pnevmatikatos, and
Stamatis Vassiliadis, Scalable multigigabit pattern matching
for packet inspection. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2008. 16(2): p. 156-166.
[17] Sarang Dharmapurikar, et al., Deep packet inspection
using parallel bloom filters. IEEE Micro, 2004. 24(1): p. 52-
61.
[18] Haoyu Song, et al. Snort offloader: A reconfigurable
hardware NIDS filter. 2005. Tampere, Finland: Institute of
Electrical and Electronics Engineers Computer Society,
Piscataway, NJ 08855-1331, United States.
[19] SNORT network intrusion detection system,
http://www.snort.org

672

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 13, 2009 at 20:45 from IEEE Xplore. Restrictions apply.

