
Pipelined Parallel AC-based Approach for Multi-String Matching 
 
 

Wei Lin1, 2, Bin Liu1 

1 Department of Computer Science and Technology, Tsinghua University, Beijing, China 
2 Department of Electronic Engineering, City University of Hong Kong, Hong Kong 

lin-w04@mails.tsinghua.edu.cn 
 
 

Abstract1 
New applications such as real-time packet 

processing require high-speed string matcher, and the 
number of strings in pattern store is increasing to tens 
of thousands, which requires a memory efficient 
solution. In this paper, a pipelined parallel approach 
for hardware implementation of Aho-Corasick (AC) 
algorithm for multiple strings matching called P2-AC 
is presented. P2-AC organizes the transition rules in 
multiple stages and processes in pipeline manner, 
which significantly simplifies the DFA state transition 
graph into a character tree that only contains 
forwarding edges. In each stage, parallel SRAMs are 
used to store and access transition rules of DFA in 
memory. Transition rules can be efficiently stored and 
accessed in one cycle. The memory cost is less than 
47% of the best known AC-based methods. P2-AC 
supports incremental update and scales well with the 
increasing number of strings. By employing two-port 
SRAMs, the throughput of P2-AC is doubled with little 
control overhead. 

1. Introduction 
String matching has been extensively studied in the 

past 30 years. A string C of length n is a sequence of 
characters C1C2…Cn. Let Σ={Y1, Y2, … YN} be a 
finite set of strings called patterns, and let I be an 
arbitrary string. The string matching problem is to 
identify and locate all substrings of I which are patterns 
in Σ. 

Nowadays new applications such as real time 
intrusion detection, anti-virus scanner and spam filter 
etc. require high-speed hardware assisted string 
matcher, and the number of strings in pattern store is 
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increasing to tens of thousands, which requires a 
memory efficient solution. 

Many of the proposed hardware solutions are based 
on the well-known Aho-Corasick (AC) algorithm [1] 
where the system is modeled as a deterministic finite 
automaton (DFA). The AC algorithm solves the string 
matching problem in linear time proportional to the 
length of the input stream. However, the memory 
requirement is too expensive in a naive hardware 
implementation. In this paper, a multiple string 
matching architecture for tens of thousands of patterns 
called P2-AC is proposed, which uses a pipelined 
processing approach with parallel SRAMs to the 
implementation of AC algorithm.  

Our contributions are three folds. Firstly, transition 
rules of are classified into multiple groups and stored in 
corresponding stages. Input character is sent to all the 
pipeline stages simultaneously, which simplifies the 
state graph into a tree and guarantees the edge 
reduction algorithmically. Previously published AC-
based methods are heuristic-based, such as bit-map 
encoding and path compression [2], bit-slice 
implementation [3], categorizing alphabets based on 
frequency count [4], and pattern set partitioning [5]. 
Performances of these methods are sensitive to the size 
and statistical properties of the pattern set.  

Secondly, in real implementation, the number of 
pipeline stages is fixed to a constant  value K. Patterns 
longer than K are divided into multiple segments with 
the length equal to or less than K. A DFA aggregation 
approach is used to combine partial match results to 
match the whole pattern. By carefully organizing the 
lookup tables and allocating the state and segment IDs, 
only a small quantity of history information needs to be 
maintained. 

Thirdly, in order to efficiently store and access 
transition rules in the DFA state graph, the field of 
current state ID in transition rule is not stored in SRAM 
but is used as address to access candidate next state. In 
order to get the next state ID in one cycle, transition 
rules with the same current state ID in one stage are 
stored at the same address of different SRAMs. During 
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lookup process, entries at the same address of multiple 
SRAMs are accessed in parallel. The outputs of 
SRAMs are stored into corresponding registers, which 
are functioned like a small BCAM compared with input 
symbol to decide the next state. 

 The discussion in this paper is restricted to the 
processing of simple strings. Extensions to handle 
strings defined by regular expressions will be discussed 
in the future work. A brief review of related works is 
given in section 2. The proposed P2-AC architecture 
will be presented in section 3. Section 4 is the 
performance evaluation and section 5 is the conclusion. 

2. Related works 
In the basic AC algorithm the system starts from an 

initial state, and looks up the transition rule table using 
the current state and input character to determine the 
next state. An entry in the transition rule table is a 3-
tuple E= (u=current state, i=input symbol, v=next state). 
A match result is generated when the system reaches an 
output state.  

To facilitate discussion, some terminologies are 
introduced. Figure 1 shows the state graph for a set of 
two strings Σ= {apple, past}. Each node in the state 
graph represents a distinct string value as shown in the 
node label. To improve readability, transitions to the 
root are excluded. The input symbol of a transition is 
equal to the last character of the string represented by 
the corresponding destination node. Nodes in the state 
graph can be assigned level number according to the 
length of the string that it represents. The level number 
of the root node is equal to zero because its state value 
corresponds to the empty string. We denote a node on 
level 1 as L1 node, and so on. An edge E= (u, i, v) is 
called a forward edge if the level number of v is equal 
to 1 plus the level number of u. Forward edges are 
shown with solid lines in Fig. 1. The remaining edges 
are called cross edges, and they are shown in dashed 
lines. 

 
Figure 1 State graph for Σ ={apple, past}. 

Some pattern matching architectures are logic based. 
The key issue is how to efficiently map patterns into 
programmable circuit logics of FPGA[6-9]. Those 

logic based methods must reprogram FPGA when 
pattern set needs to update, and the size of pattern set is 
restricted because the logic resource in FPGA is 
expensive and limited. I. Sourdis [9] and C.R.Clark [10] 
present their architectures to give several methods to 
efficiently map patterns on FPGAs. 

Some pattern matching architectures are RAM based 
using AC like algorithms. Patterns are stored in RAMs 
other than logics. The key issue is how to use less 
memory to support bigger pattern set with deterministic 
high throughput. Tuck et al [2] proposed a bit-map 
encoding and path compression technique to reduce the 
memory cost of the transition rule table. Tan and 
Sherwood [3] proposed to use bit-split finite state 
machines (FSMs) where each bit-split FSM processed 
one bit of an input byte, if there are N signatures, there 
will be N/2 FSMs. Lunteren [5] proposed a novel 
approach to substantially reduce the size of the 
transition rule table. All edges pointing to the same 
node v on L1 are replaced by a single entry (*, i, v) in 
the transition rule table, where * is a wildcard. 
Similarly, all edges pointing to the root are replaced by 
a single entry (*, *, root). The number of edges can be 
further reduced to about 1.5 edges per character by 
dividing the signature set into multiple groups. But the 
performance of the partitioning scheme depends largely 
on the size and statistical properties of the signature set. 
Pao proposed a multiple stages architecture [11] to 
reduce the transition rules, which used hashing scheme 
to get the next state when accessing each lookup table, 
hashing confliction cannot be avoided and the 
performance is not guaranteed. Song proposed a n-step 
cache architecture [12] to eliminate a part of cross 
edges from the graph and use a complicated data 
structure to store and access transition rules with the 
same current state, it assumes that most of the cross 
edges belong to 1-step category and the number of 
states shared by multiple transition rules as current 
state is rare, if the statistical properties of the pattern 
set change, the memory cost for Song’s method may 
not have an ideal result. 

Some pattern matching architectures are TCAM 
based. Patterns are fully or partly stored in Ternary 
Content addressable Memory (TCAM). The speed and 
memory efficiency are partially offset by the slower 
clock rate (maximum 266 MHz) and higher cost of 
TCAM. Alicherry et al [13] used TCAM to implement 
the transition rule table. In their method, state 
transitions are based on multiple (typically 2 to 4) input 
characters. Dimopoulos et al [4] proposed to divide the 
256 alphabets into frequent and infrequent characters 
based on their frequency counts in the signature set. A 
full state graph is constructed for frequent characters, 
where the transitions rule table for infrequent 
characters is implemented using CAM, the 
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performance depends on statistical properties of the 
signature set. 

There are also proposals based on hashing [14-16] 
and Bloom filters [17, 18]. A general drawback of 
these methods is that they can only handle strings of up 
to certain length.  Long signatures are divided into 
multiple segments. Complex auxiliary data structures 
and/or hardwired aggregation logic are required to 
combine the partial match results.  

In this paper, P2-AC utilizes the parallelizability of 
hardware implementation to store and process the 
transition table in pipeline manner, which eliminates all 
the cross edges and greatly reduces the memory 
requirement. P2-AC also utilizes the resource of 
multiple SRAM blocks in FPGA or ASIC chipset, 
which guarantees the deterministic line speed 
throughput and supports incremental updating the 
pattern set. Moreover, P2-AC gives a simple solution to 
handle long signatures without affecting the number of 
stages in pipeline. 

3. P2-AC algorithm and architecture 
In order to reduce the number of states in DFA state 

graph, all patterns and input characters are converted to 
lower case. For case sensitive pattern, a bitmap is used 
to specify each character of the pattern is lower or 
upper case, which is used to check with the input 
stream when the lower case pattern has been matched. 

In the DFA, the longest matching substring for the 
current input is represented by the state value of the 
current state. Suppose the input stream is “appastxyz”. 
The DFA of Fig. 1 will visit the nodes <a>, <ap> and 
<app> in the first 3 cycles. In the 4th cycle, the input 
character ‘a’ does not match the input symbol of any 
forward edges originating from <app>. Hence, the 
DFA will follow a cross edge and transits to state <pa>. 

The reason for the existence of cross edges is that 
the starting position of a pattern can be anywhere in the 
input stream, and the substring of a pattern may be the 
prefix of another pattern. In the basic AC algorithm, 
there is only one current state active at one time. When 
the first character of a pattern arrives and the current 
state is not <root>, the transition rule corresponding to 
the cross edge may be accessed later. 

It’s interesting if multiple threads are used to access 
the state graph, each time an input character is sent to 
all the threads, and there is always a new thread 
beginning from <root>. As shown in Fig. 2, all cross 
edges can be eliminated from the state graph, which is 
simplified to a character tree. A thread is terminated 
when there is no forwarding edge with the input 
symbol equal to the input character, otherwise, this 
thread will follow the matched forwarding edge to the 
next active state on the next level. When an output state 

is reached, the system will report a pattern is matched 
by the thread. There is at most one thread on each level. 

 
Figure 2 Simplified state tree for Σ = {apple, past}. 

In the worst case, on each level of the simplified 
state tree there is an active state, the number of threads 
is equal to the height of the tree, which is equal to the 
length of the longest pattern plus one (plus the <root> 
node represents empty string). In Snort pattern set, the 
maximum length is more than 200, it’s uneconomical 
and impractical to track so many threads 
simultaneously in hardware implementation. 

In order to handle long patterns and restrict the 
maximum number of threads to a constant value K, 
patterns longer than K are divided into multiple 
segments of length K except the last segment whose 
length is equal to or less than K. The pattern matching 
system is composed of two parts, the first part named 
pipeline unit (PU) uses at most K threads to match each 
segment, the second part named aggregation unit (AU) 
uses the matching result from the first part to aggregate 
the partial matched segments together to match the 
whole pattern. 

In PU, a character tree is built using the divided 
segments. The height of the tree is K+1 (plus the 
<root> node which represents empty segment). Edges 
representing transition rules are stored in K pipeline 
stages. The logical format of transition rule in PU is 
<current state, input character, next state>. A transition 
rule is stored in stage X if level number of the node in 
the <next state> field is equal to X. During each cycle, 
copies of a character from input stream are sent to K 
stages, at most one active thread exists on one stage, 
which will use the active state and the input character 
to search the transition rule table to get the next state 
and send it to the next stage, if it’s an output state, the 
matched segment ID will be sent to AU.  

In AU, a DFA is used to aggregate partial matched 
segments together to match the whole pattern. The 
logical format of transition rule in AU is <current state, 
input segment, next state>. The number of states in 
DFA of AU is much fewer than the original DFA 
constructed directly. Transition rules in AU are 
classified into K groups based on the length of input 
segment, which is from 1 to K. Each group is stored in 
a table (T1 to Tk). In the worst case, each cycle K input 
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segments with different length are sent to AU, and look 
up K tables separately. The system need to maintain K 
current states for each table. 

Because a segment with length less than K must be 
the last segment of a pattern, the search result is the 
index of a pattern in tables from T1 to Tk-1. Next state 
(NS) is generated in Tk. In the following ith cycle 
(1≤i<K), NS will become the current state of Ti.  

When looking up the transition rule tables in PU or 
AU, it’s desirable to get the expected transition rule in 
one memory access cycle.  In order to achieve this 
requirement, transition rules with the same current state 
are stored in the same address of different SRAMs. The 
current state ID is used as address to get all the 
candidate transition rules, which are then compared 
with the input character or segment to get the expected 
matching result. The number of SRAMs for each stage 
is equal to maximum transition rules with the same 
current state. The special case is that transition rules in 
PU or AU with <root> as current state are stored in one 
SRAM, which is indexed by input character or 
carefully assigned segment ID. 

The architecture of P2-AC is shown in Fig. 3. 
Assuming K=4, in each cycle, one character from the 
input stream is sent to PU. PU is implemented by 4 
pipeline stages. Transition rules are stored separately in 
tables from LT1 to LT4. The active current state is 
maintained by each stage. Related transition rules in 
one stage are extracted and compared with the input 
character. The output to the next stage is the next state 
ID, the output to AU is the matched segment ID, the 
output to Pattern store is matched short pattern ID. By 
carefully assignment, the three IDs can be the same 
value. 

 
Figure 3 Architecture of P2-AC 

In AU, transition rules are stored separately in tables 
from T1 to T4. Input segment ID is sent to Ti if the 
length of the segment is equal to i (1≤i≤4). Tstart is a 
suitable of T4, which stores the first segment for each 
long pattern. Active current state for each table is 

maintained in current state registers, which are updated 
by state ID translation table (STT) each cycle. STT is 
used to record the transition rules’ addresses for an 
active state in tables from T1 to T4. The index of the 
active state is provided by T4. In order to reduce the 
size of STT, if an active state only exists in one table, it 
will not be stored in STT but directly provided by T4. 
Related transition rules for the current active state is 
extracted from the table and compared with the input 
segment ID. The output of Ti (1≤i≤4) to pattern store is 
the long pattern ID. The output of T4 to STT is the 
index of next active state existing in multiple tables, or 
the transition rules’ address of the next active state in 
one table. 

Let’s consider the structure of transition rule table in 
each stage of PU. According to the statistics of patterns 
in SNORT rules, the number of child nodes for one 
state is less than 50 and usually 1 or 2, except for 
<root>; the number of child nodes of <root> is a large 
one. Transition rules in stage1 are stored in one SRAM 
which is indexed by the ASCII code of the input 
character. Transition rules on other stages are stored in 
parallel SRAMs, and the State ID is assigned as 
address to locate all the related transition rules, which 
are read into registers and compared with the input 
character. 

SRAM 
1

SRAM 
2

SRAM 
3

SRAM 
4

SRAM 
K-1

SRAM K

K 
SRAMs

Group K

Group K-1

Group 4

……

……

Group 3

Group 2

Group 1

Register 1

Register 2

……

Register K

Comparator

Matching 
result

 
Figure 4 Structure of transition rule table 

As shown in Fig. 4, transition rules with the same 
current state are stored at the same address in multiple 
SRAMs. The number of SRAMs in one stage is 
determined by the maximum number of transition rules 
with the same current state, which is called maximum 
fan-out number in this paper. According to the statistics 
of SNORT rules, there are only a few states with a 
large fan-out number less than 56, while most of the 
states’ fan-out number is equal to 1 or 2. The sizes of 
the parallel SRAMs are not the same. Transition rules 
are grouped into multiple groups and arranged in 
descending order based on the fan-out number of the 
current state. By choosing the size of the SRAMs, there 
are unallocated entries between the groups, which can 
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be used to support incremental update when new 
patterns are added into the rule set. 

Because all the transition rules in LT1 have the same 
current state <root>, they are all stored in one SRAM. 
As shown in Fig. 5, the SRAM has 256 entries. 
Transition rule use the ASCII code of the input 
Character as its address in the SRAM. When looking 
up LT1, the input character will be used as index to 
locate the related transition rule in the SRAM. 

 
Figure 5 Transition rules in LT1 of PU 

Transition rules in AU are classified into K tables 
(K=4) according to the length of the input segment.  
Similar to the structure of tables in PU, transition rules 
in one table in AU are also stored in parallel SRAMs as 
shown in Fig. 4. The main difference is the next 
matching position among tables in AU is not shifted 
one by one, but determined by the length of the next 
segment sent from PU. State register Bi in Fig. 3 are 
used to record the active current state for Ti in AU, 
which will be updated by STT in the next cycle. 
Transition rules with the same current state may not be 
stored at the same address among different tables. As 
shown in Fig. 6, STT is used to record the addresses for 
one state in different tables in AU. If the state only 
exists in one table, its address in that table will not be 
stored in STT but provided directly by T4. Otherwise, 
T4 will provide the index of the state to access STT. 
This operation can be pipelined, so it will not slow 
down the processing speed of the system. 

For some transition rules in T4 whose current state is 
<root>, they are all stored in one SRAM. When 
assigning segment IDs, segments in the transition rules 
with <root> as their current state are assigned values 
from 0 to M-1 (M is the number of the transition rules 
whose current state is <root>). Then if the current state 
of T4 is equal to <root>, segment ID is used as index to 
locate the related transition rule in T4. The other 
transition rules in T4 are stored in parallel SRAMs as 
shown in Fig. 4. 

a1 a2 a3 a4

b1 Null Null b4

e1 e2 Null e4

…
…

Address 
in T1

Address 
in T2

Address 
in T3

Address 
in T4

Null c2 Null c4

Null Null d3 d4

g1 Null g3 g4

Null f2 f3 f4

State 
Index

0

1

2

3

4

5

6

…
…

 
Figure 6 The format of State ID translation table (STT) 

In order to support concurrent accesses, pattern store 
uses 2K SRAMs to store patterns. When K=4, the 
number of SRAMs in pattern store is 8. 

Let’s consider an example where the pattern set is 
{apple, applause, ampliation, past, pat, parable} and 
the input stream is “appampliation”.  

 
Figure 7 Logical organization in PU 

As shown in Fig. 7, the patterns are divided into 10 
segments when K=4. {pat, past} are patterns shorter 
than 4, which can be directly matched. {appl, e, ause, 
ampl, iati, on, para, ble} are segments, which will be 
sent to AU for aggregation. As shown in Fig. 8, 
segments of one pattern are aggregated to match the 
whole pattern. {apple, applause, ampliation, parable} 
are patterns longer than 4, which are matched in AU. 

 
Figure 8 Logical organization in AU 

Considering the physical organization in PU, LT1 
uses one SRAM to store transition rules to nodes on 
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level 1, which is indexed by the ASCII code of the 
input character. LT2, LT3 and LT4 use parallel SRAMs 
to store the transition rules to the nodes on the 
corresponding levels, which are indexed by the current 
state IDs. As shown in Fig. 9, segment {e} can be 
matched in LT1, segment {on} can be matched in the 
first SRAM of LT2, segment {ble} can be matched in 
the first SRAM of LT3, pattern {pat} can be matched in 
the second SRAM of LT3, segments {appl, ampl, ause, 
iati, para} can be matched in the first SRAM of LT4 
and pattern {past} can be matched in the first SRAM of  
LT4. 

 
Figure 9 Physical organization in PU 

 
Figure 10 Physical organization in AU 

Considering the physical organization in AU, 
transition rules with <root> as their current state are 
stored in one SRAM in T4, which is called starting 
table and indexed by the pre-assigned input segment 
IDs. The other transition rules in T1, T2, T3 and T4 are 
stored in parallel SRAMs. As shown in Fig. 10, 
transition rules <root, appl, appl>, <root, ampl, ampl> 
and <root, para, para> are stored in the starting table in 
T4; transition rules <appl, ause, applause> and <ampl, 
iati, ampliati> are stored in the other part of T4; 
transition rule <appl, e, apple> is stored in T1; 
transition rule <ampliati, on, ampliation> is stored in 
T2; transition rule <para, ble, parable> is stored in T3. 
The bold states in transition rules are matched patterns. 

In Fig. 10, state {appl} both exists in address 0 of T1 
and in address 1 of T4. We use one entry in STT to 
record the address mapping relationship for state 
{appl}. 

To support accessing pattern store concurrently, 
patterns are stored in multiple SRAMs, which are one 
to one mapping relationship with tables in PU and AU. 

Assuming the input stream is {appampliation}, in 
the 7th cycle, segment {ampl} is matched in PU and 
state {ampl} is matched in AU. In the 11th cycle, 
segment {iati} is matched in PU and state {ampliati} is 
matched in AU. In the 13th cycle, segment {on} is 
matched in PU and pattern {ampliation} is finally 
matched in AU. 

For one type of transition rules, whose output 
represents more than one meaning, such as next state 
ID, segment ID or pattern ID, we assign these IDs with 
the same value and use three bits to indicate the 
effective meanings of the stored value. Because the 
numbering space in different tables is independent, the 
ID allocating strategy is reasonable and memory 
efficient. 

4. Performance evaluation 
We extract 5669 distinct patterns from the Snort 

V2.8 rule set [19]. The signatures are converted into 
lower case letters. The total character count is 79211. 
The maximum pattern length is 109 characters and the 
average length is about 14 characters. About 96% of 
the signatures have no more than 36 characters. 

Our evaluation indicates that better memory 
efficiency is obtained when the segment length is in the 
range of 4 to 6. As shown in Table 1, for k=4, the 
number of entries in the lookup tables for the pipeline 
unit and the DFA unit are 18599 and 15876, 
respectively. The width of the state ID for the pipeline 
unit and the DFA unit are 15 bits and 14 bits, 
respectively. Because LT1 and Tstart are indexed by 
input character and input segment ID respectively, one 
SRAM with width 18 bits and length 256 is allocated to 
LT1, another SRAM with width 20 bits and length 2561 
is allocated to Tstart. STT stores the addresses for states 
existing in multiple tables in AU, one SRAM with 
width 45 bits and length 376 is allocated to STT. Other 
tables in PU and AU employ parallel SRAMs to store 
transition rules with the same current state at the same 
address, which are indexed by the current state. 

Table 1 Allocation of Snort rule segments 
K=4 LT1 LT2 LT3 LT4   

# of Entries in 
PU 

208 2092 6811 9494   

Entry Width 18 26 26 26   
# of SRAMs 1 50 29 18   

# of 0 50 29 18   
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Comparators 
Comparator 

Width  8 8 8   

K=4 T1 T2 T3 T4 Tstart STT 
# of Entries in 

AU 1143 1094 974 9432 2622 379 

Entry Width 35 35 35 35 20 45 
# of SRAMs 6 4 5 31 1 1 

# of 
Comparators 6 4 5 31 0 0 

The resource cost of SRAMs and logic registers in 
FPGA is shown in Table 2. In all, the Snort pattern set 
costs 305 M512 SRAM blocks and 228 M4K SRAM 
blocks, which are about 133KB and 13.68 bits per 
character for the utilized Snort pattern set. Logic 
registers are used to implement the parallel 
comparators for the lookup tables, which are 4132 
LUTs in FPGA and about 0.05 LUTs per character. We 
use Altera’s StratixII EP2S60 FPGA to implement the 
pattern matching system using P2-AC method. The 
resource cost for the Snort pattern set used is about 
42.8% SRAM bits and 8.5% LUTs in EP2S60 FPGA. 

Table 2 SRAMs and logic Cost in FPGA 
K=4 M512 M4K M-

RAM LUTs 

LT1 3 1 0 0 
LT2 118 2 0 1300 
LT3 68 37 0 754 
LT4 37 57 0 468 
Tstart 5 12 0 0 
T1 13 9 0 210 
T2 7 8 0 140 
T3 8 8 0 175 
T4 44 90 0 1085 

STT 2 4 0 0 
SRAM 
blocks 305 228 0 4132 

EP2S60 329 255 2 48352 
Total cost 1,090,048 bits 4132 
EP2S60 2,544,192 bits 48352 

Percentage 42.8% 8.5% 

Cost per char 13.68 bits/char 0.05 
LUTs/char 

Performance comparison with 5 other AC-based 
methods is given in Table 3. The memory cost of P2-
AC, BFPM [5] and the TCAM-based method of [13] 
are evaluated using the same signature set. When the 
given signature set is divided into 8 groups in BPFM, 
the number of edges per character is about 2.5. With 
36-bit lookup table entries, the memory cost for BFPM 
is about 90 bits/char. In [13], we assume state 
transitions are based on 2 input characters per cycle. 

The hardware cost of bit-split FSM [3] and split-AC [4] 
are quoted from [4]. The hardware cost of CDFA are 
quoted from [12]. Both bit-split FSM and split-AC 
require complex control logic. For the split-AC method, 
there can be tradeoff between memory cost and control 
logic. The chip area for a FPGA logic cell is 
approximately the same as 12 bytes of memory [3]. 
Hence, the actual hardware cost for the 2 sets of 
implementation parameters shown in Table 3 are more 
or less the same.  

From Table 3, we can see that P2-AC has a clear 
performance advantage over the other methods. The 
memory cost of P2-AC is lower than BFPM and CDFA 
by 85% and 47%, respectively. Moreover, the 
throughput of P2-AC is two times that of CDFA. In 
general, methods such as BFPM and CDFA that divide 
the signature set into a larger number of subsets will be 
in a disadvantage position when considering FPGA 
implementation. In these methods, the system will have 
8 to 16 large lookup tables of roughly equal size. Even 
though the total memory requirement may be smaller 
than the memory capacity of a FPGA, but the required 
memory modules may not fit the size of the RAM 
blocks available on the device. As a result, a higher-
end more expansive device needs to be used. 

Table 3 Comparison with other AC-based methods 

Method 
Pattern 

Set 
(chars)

Memory 
(per 
char) 

Control 
logic 

Speed 
(char/cycle) 

bit-split FSM 12.8K 186 bits complex 1 

split-AC 24K 
65 bits 60061 

LUTs 1 
(slower clk)189 bits 12341 

LUTs 
BFPM 

(8 groups) 80K 90 bits simple 1 

TCAM 
(2char/cycle) 80K 

56 bits 
TCAM 

+ 27 
bits 

SRAM 

simple 
2 to 4 (max 

266MHz 
clk) 

CDFA (4 
groups, 2-

way 
associative) 

29K 49.6 
bits 

data not 
available 

1 (interleave 
2 data 

streams) 
CDFA (4 
groups, 8-

way 
associative) 

29K 26.4 
bits 

data not 
available 

1 (interleave 
2 data 

streams) 

P2-AC 80K 13.68 
bits 4132LUTs 2 

The control logic for P2-AC is very simple. The 
pipelining of output results from one stage to the next 
stage can be realized by simple clocked-register. LT1 is 
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a 256-entry table indexed by the input character. Tstart is 
a table indexed by the input segment ID. Other tables 
are implemented by parallel SRAMs indexed by the 
current state ID, related transition rules are extracted 
and compared together to get the matched result. By 
carefully assignment, the next state ID, segment ID and 
pattern ID represented by one transition rule can be the 
same value. 

5. Conclusion 
A pipelined approach with parallel SRAMs for 

hardware implementation of the Aho-Corasick 
algorithm is presented. The system maintains multiple 
threads that traverse the automaton concurrently so that 
only forward edges needed to be stored in the state 
graph. In contrast to previously published heuristic-
based methods, state graph reduction in P2-AC is 
guaranteed algorithmically. This is a definite advantage 
that ensures scalability of the method to handle the fast 
expanding signature set for network intrusion 
detection. Parallel SRAMs are used to store and access 
transition rules efficiently. Incremental update is also 
supported by P2-AC, patterns can be added into or 
deleted from the pattern set within one cycle. The 
memory cost of P2-AC is as low as 13.68 bits/char for 
a signature set with 5.7K strings which is less than 47% 
of the best known AC-based methods. Simplicity and 
elegance of the pipeline control allows the system to 
operate at high clock rate. In addition, if two-port 
memories are available, we can implement 2 pipelines 
on the same device that share the lookup tables. As a 
result, the system throughput can be doubled with a 
little overhead.  
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